Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines.

نویسندگان

  • K H Chen
  • F M Yakes
  • D K Srivastava
  • R K Singhal
  • R W Sobol
  • J K Horton
  • B Van Houten
  • S H Wilson
چکیده

DNA polymerase beta is required in mammalian cells for the predominant pathway of base excision repair involving single nucleotide gap filling DNA synthesis. Here we examine the relationship between oxidative stress, cellular levels of DNA polymerase beta and base excision repair capacity in vitro , using mouse monocytes and either wild-type mouse fibroblasts or those deleted of the DNA polymerase beta gene. Treatment with an oxidative stress-inducing agent such as hydrogen peroxide, 3-morpholinosydnonimine, xanthine/xanthine oxidase or lipopolysaccharide was found to increase the level of DNA polymerase beta in both monocytes and fibroblasts. Base excision repair capacity in vitro , as measured in crude cell extracts, was also increased by lipopolysaccharide treatment in both cell types. In monocytes lipopolysaccharide-mediated up-regulation of the base excision repair system correlated with increased resistance to the monofunctional DNA alkylating agent methyl methanesulfonate. By making use of a quantitative PCR assay to detect lesions in genomic DNA we show that lipopolysaccharide treatment of fibroblast cells reduces the incidence of spontaneous DNA lesions. This effect may be due to the enhanced DNA polymerase beta-dependent base excision repair capacity of the cells, because a similar decrease in DNA lesions was not observed in cells deficient in base excision repair by virtue of DNA polymerase beta gene deletion. Similarly, fibroblasts treated with lipopolysaccharide were more resistant to methyl methanesulfonate than untreated cells. This effect was not observed in cells deleted of the DNA polymerase beta gene. These results suggest that the DNA polymerase beta-dependent base excision repair pathway can be up-regulated by oxidative stress-inducing agents in mouse cell lines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting enhanced cell killing through PARP inhibition.

PARP inhibitors show promise as combination and single agents in cancer chemotherapy. Here, we evaluate results obtained with mouse fibroblasts and the common laboratory PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) and analyze the potential for enhanced cytotoxicity following the combination of a DNA-damaging agent and a PARP inhibitor. Methylated DNA bases are repaired by the monofunctional...

متن کامل

Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage.

DNA polymerase beta (beta-pol), which is involved in base excision repair, was investigated for its role in protection of cells against various genotoxic agents and cytostatic drugs using beta-pol knockout mouse fibroblasts. We show that cells lacking beta-pol are highly sensitive to induction of apoptosis and chromosomal breakage by methylating agents, such as N-methyl-N'-nitro-N-nitrosoguanid...

متن کامل

Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals a...

متن کامل

DNA Polymerases β and λ Mediate Overlapping and Independent Roles in Base Excision Repair in Mouse Embryonic Fibroblasts

Base excision repair (BER) is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta) is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda), was shown to be important in BER of oxidative DNA damage. To further e...

متن کامل

Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation.

The human AP endonuclease (Ape1 or ref-1) DNA base excision repair (BER) enzyme is a multifunctional protein that has an impact on a wide variety of important cellular functions including oxidative signaling, transcription factor regulation, and cell cycle control. It acts on mutagenic AP (baseless) sites in DNA as a critical member of the DNA BER repair pathway. Moreover, Ape1/ref-1 stimulates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 1998